Equilateral Quantum Graphs and Their Decorations

نویسنده

  • KONSTANTIN PANKRASHKIN
چکیده

We consider magnetic Schrödinger operators on quantum graphs with identical edges. The spectral problem for the quantum graph is reduced to the discrete magnetic Laplacian on the corresponding combinatorial graph and a certain Hill equation. This may be viewed as a generalization of the classical spectral analysis for the Hill operator to such structures. Using this correspondence we show that that the number of gaps in the spectrum of Schrödinger operators in graphs admits an estimate from below in terms of the Hill operator independently of the graph structure. We also discuss the decoration of graphs in the context of this correspondence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectra of Schrödinger operators on equilateral quantum graphs

We consider magnetic Schrödinger operators on quantum graphs with identical edges. The spectral problem for the quantum graph is reduced to the discrete magnetic Laplacian on the underlying combinatorial graph and a certain Hill operator. In particular, it is shown that the spectrum on the quantum graph is the preimage of the combinatorial spectrum under a certain entire function. Using this co...

متن کامل

Eigenvalue Bracketing for Discrete and Metric Graphs

We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using different types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the metric graph corresponding to the Dirichlet spectrum) we carry over these estimates from the metric graph La...

متن کامل

Asymptotic bounds on the equilateral dimension of hypercubes

A subset of the finite dimensional hypercube is said to be equilateral if the distance of any two distinct points equals a fixed value. The equilateral dimension of the hypercube is defined as the maximal size of its equilateral subsets. We study asymptotic bounds on the latter quantity considered as a function of two variables, namely dimension and distance. lorenz minder, thomas sauerwald and...

متن کامل

Fixed-Orientation Equilateral Triangle Matching of Point Sets

Given a point set P and a class C of geometric objects, GC(P ) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C ∈ C containing both p and q but no other points from P . We study G5(P ) graphs where 5 is the class of downward equilateral triangles (ie. equilateral triangles with one of their sides parallel to the x-axis and the...

متن کامل

Hamiltonian Cycles in Triangular Grids

We study the Hamiltonian Cycle problem in graphs induced by subsets of the vertices of the tiling of the plane with equilateral triangles. By analogy with grid graphs we call such graphs triangular grid graphs. Following the analogy, we define the class of solid triangular grid graphs. We prove that the Hamiltonian Cycle problem is NPcomplete for triangular grid graphs. We show that with the ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005